Anatomy of cage formation in a two-dimensional glass-forming liquid

  • 1.

    Binder, K. & Kob, W. Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics (World Scientific, 2011).

  • 2.

    Weeks, E. & Weitz, D. Subdiffusion and the cage effect studied near the colloidal glass transition. Chem. Phys. 284, 361–367 (2002).

    CAS  Article  Google Scholar 

  • 3.

    Sastry, S., Truskett, T. M., Debenedetti, P. G., Salvatore, T. & Stillinger, F. H. Free volume in the hard sphere liquid. Mol. Phys. 95, 289–297 (1998).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Pastore, R., Giuseppe, P., Antonio, S. & Pica Ciamarra, M. Cage size and jump precursors in glass-forming liquids: experiment and simulations. J. Phys. Chem. Lett. 8, 1562–1568 (2017).

    CAS  Article  Google Scholar 

  • 5.

    Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).

    ADS  CAS  Article  Google Scholar 

  • 6.

    van Megen, W. & Underwood, S. M. Glass transition in colloidal hard spheres: mode-coupling theory analysis. Phys. Rev. Lett. 70, 2766–2769 (1993).

    ADS  Article  Google Scholar 

  • 7.

    Barrat, J.-L., Roux, J.-N. & Hansen, J.-P. Diffusion, viscosity and structural slowing down in soft sphere alloys near the kinetic glass transition. Chem. Phys. 149, 197–208 (1990).

    CAS  Article  Google Scholar 

  • 8.

    Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Murray, C. A. & Grier, D. G. Video microscopy of monodisperse colloidal systems. Annu. Rev. Phys. Chem. 47, 421–462 (1996).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Weeks, E., Crocker, J., Levitt, A., Schofield, A. & Weitz, D. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Li, B. et al. Breakdown of diffusivity–entropy scaling in colloidal glass-forming liquids. Commun. Phys. 1, 79 (2018).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Anderson, D. et al. Local elastic response measured near the colloidal glass transition. J. Chem. Phys. 138, 12A520 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass transition. Rep. Prog. Phys. 75, 066501 (2012).

    ADS  Article  Google Scholar 

  • 15.

    Nagamanasa, K. H., Gokhale, S., Sood, A. & Ganapathy, R. Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former. Nat. Phys. 11, 403–408 (2015).

    Article  Google Scholar 

  • 16.

    Buttinoni, I. et al. Direct observation of impact propagation and absorption in dense colloidal monolayers. Proc. Natl Acad. Sci. USA 114, 12150–12155 (2017).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Cash, C. E. et al. Local melting attracts grain boundaries in colloidal polycrystals. Phys. Rev. Lett. 120, 018002 (2018).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Lavergne, F. A., Curran, A., Aarts, D. G. & Dullens, R. P. Dislocation-controlled formation and kinetics of grain boundary loops in two-dimensional crystals. Proc. Natl Acad. Sci. USA 115, 6922 (2018).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Lozano, C., Gomez-Solano, J. R. & Bechinger, C. Active particles sense micromechanical properties of glasses. Nat. Mater. 18, 1118–1123 (2019).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Götze, W. Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford Univ. Press, 2008).

  • 21.

    Vivek, S., Kelleher, C. P., Chaikin, P. M. & Weeks, E. R. Long-wavelength fluctuations and the glass transition in two dimensions and three dimensions. Proc. Natl Acad. Sci. USA 114, 1850–1855 (2017).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Flenner, E. & Szamel, G. Viscoelastic shear stress relaxation in two-dimensional glass-forming liquids. Proc. Natl Acad. Sci. USA 116, 2015–2020 (2019).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Hansen, J.-P. & McDonald, I. R. Theory of Simple Liquids (Academic Press, 1986).

  • 24.

    Schweizer, K. Dynamical fluctuation effects in glassy colloidal suspensions. Curr. Opin. Coll. Interf. Sci. 12, 297–306 (2007).

    CAS  Article  Google Scholar 

  • 25.

    Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Kob, W., Roldán-Vargas, S. & Berthier, L. Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids. Nat. Phys. 8, 164–167 (2012).

    CAS  Article  Google Scholar 

  • 27.

    Gazuz, I., Puertas, A., Voigtmann, T. & Fuchs, M. Active and nonlinear microrheology in dense colloidal suspensions. Phys. Rev. Lett. 102, 248302 (2009).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Gruber, M., Puertas, A. & Fuchs, M. Critical force in active microrheology. Phys. Rev. E 101, 012612 (2020).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Lerner, E. & Bouchbinder, E. A characteristic energy scale in glasses. J. Chem. Phys. 148, 214502 (2018).

    ADS  Article  Google Scholar 

  • 30.

    Li, B., Xiao, X., Wang, S., Wen, W. & Wang, Z. Real-space mapping of the two-dimensional phase diagrams in attractive colloidal systems. Phys. Rev. X 9, 031032 (2019).

    CAS  Google Scholar 

  • 31.

    Yang, F., Wu, W., Chen, S. & Gan, W. The ionic strength dependent zeta potential at the surface of hexadecane droplets in water and the corresponding interfacial adsorption of surfactants. Soft Matter 13, 638–646 (2017).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Edmond, K. V., Nugent, C. R. & Weeks, E. R. Influence of confinement on dynamical heterogeneities in dense colloidal samples. Phys. Rev. E 85, 041401 (2012).

    ADS  Article  Google Scholar 

  • 33.

    Ma, X. et al. Test of the universal scaling law of diffusion in colloidal monolayers. Phys. Rev. Lett. 110, 078302 (2013).

    ADS  Article  Google Scholar 

  • 34.

    Eppmann, P., Prüger, B. & Gimsa, J. Particle characterization by AC electrokinetic phenomena: 2. Dielectrophoresis of latex particles measured by dielectrophoretic phase analysis light scattering (DPALS). Coll. Surf. A 149, 443–449 (1999).

    CAS  Article  Google Scholar 

  • 35.

    Villadsen, N. et al. Pushing the limit: investigation of hydrodynamic forces on a trapped particle kicked by a laser pulse. Opt. Express 23, 13141–13152 (2015).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Zensen, C., Villadsen, N., Winterer, F., Keiding, S. & Lohmüller, T. Pushing nanoparticles with light – a femtonewton resolved measurement of optical scattering forces. APL Photon. 1, 026102 (2016).

    ADS  Article  Google Scholar 

  • 37.

    Kurita, R. & Weeks, E. R. Glass transition of two-dimensional binary soft-disk mixtures with large size ratios. Phys. Rev. E 82, 041402 (2010).

    ADS  Article  Google Scholar 

  • 38.

    Weysser, F. & Hajnal, D. Tests of mode-coupling theory in two dimensions. Phys. Rev. E 83, 041503 (2011).

    ADS  Article  Google Scholar 

  • 39.

    Ediger, M. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    ADS  CAS  Article  Google Scholar 

  • 40.

    van Megen, W., Mortensen, T. C., Williams, S. R. & Müller, J. Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition. Phys. Rev. E 58, 6073–6085 (1998).

    ADS  Article  Google Scholar 

  • 41.

    Brambilla, G. et al. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition. Phys. Rev. Lett. 102, 085703 (2009).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Klix, C. L., Maret, G. & Keim, P. Discontinuous shear modulus determines the glass transition temperature. Phys. Rev. X 5, 041033 (2015).

    Google Scholar 

  • Leave a Reply

    Fill in your details below or click an icon to log in:

    WordPress.com Logo

    You are commenting using your WordPress.com account. Log Out /  Change )

    Google photo

    You are commenting using your Google account. Log Out /  Change )

    Twitter picture

    You are commenting using your Twitter account. Log Out /  Change )

    Facebook photo

    You are commenting using your Facebook account. Log Out /  Change )

    Connecting to %s

    Instant Loan

    All About Loans

    seo tool

    Boost the Website Ranking

    Gadget Deals

    latest gadgets in market

    DIGITAL STORE

    Digital product online store

    Organic Gardening

    Tips of Growing organically

    AM Yoga Space

    All About Yoga Practice, Poses, and Benefits

    Top Acne Tips

    Acne Remedy Tips for at Home

    Inner Peace

    True wealth is the wealth of the soul

    Transformelle

    You're always one decision away from a totally different life

    Girl Next Door

    A Digital Journal of all things Style, Fashion, Faith and Beauty

    Birdys Health Dose

    Health equals Wealth

    %d bloggers like this: