Ultra-sensitive and resilient compliant strain gauges for soft machines

  • 1.

    Sundaram, S. et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Kim, J. et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 365, 668–672 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Galloway, K. C. et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3, 23–33 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Xu, S. et al. Biocompatible soft fluidic strain and force sensors for wearable devices. Adv. Funct. Mater. 29, 1970038 (2019).

    Google Scholar 

  • 5.

    Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, 1706383 (2018).

    Google Scholar 

  • 6.

    Shintake, J., Rosset, S., Schubert, B., Floreano, D. & Shea, H. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28, 231–238 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Sinatra, N. R. et al. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 4, eaax5425 (2019).

    PubMed  Google Scholar 

  • 8.

    Chou, H.-H. et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Lu, N., Lu, C., Yang, S. & Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012).

    CAS  Google Scholar 

  • 10.

    Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Li, L. et al. Ultrastretchable fiber sensor with high sensitivity in whole workable range for wearable electronics and implantable medicine. Adv. Sci. 5, 1800558 (2018).

    Google Scholar 

  • 12.

    Qiu, D., Chu, Y., Zeng, H., Xu, H. & Dan, G. Stretchable MoS2 electromechanical sensors with ultrahigh sensitivity and large detection range for skin-on monitoring. ACS Appl. Mater. Interfaces 11, 37035–37042 (2019).

    CAS  PubMed  Google Scholar 

  • 13.

    Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Panizzolo, F. A. et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J. Neuroeng. Rehabil. 13, 43 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Araromi, O. A., Rosset, S. & Shea, H. R. High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 7, 18046–18053 (2015).

    CAS  PubMed  Google Scholar 

  • 16.

    Sun, J.-Y., Keplinger, C., Whitesides, G. M. & Suo, Z. Ionic skin. Adv. Mater. 26, 7608–7614 (2014).

    CAS  PubMed  Google Scholar 

  • 17.

    Cotton, D. P. J., Graz, I. M. & Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 9, 2008–2009 (2009).

    ADS  Google Scholar 

  • 18.

    Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Mengüç, Y. et al. Wearable soft sensing suit for human gait measurement. Int. J. Robot. Res. 33, 1748–1764 (2014).

    Google Scholar 

  • 20.

    Seyedin, S. et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6, 219–249 (2019).

    CAS  Google Scholar 

  • 21.

    Kang, D. et al. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Choi, Y. W. et al. Ultra-sensitive pressure sensor based on guided straight mechanical cracks. Sci. Rep. 7, 40116 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Araromi, O. A., Walsh, C. J. & Wood, R. J. Hybrid carbon fiber–textile compliant force sensors for high-load sensing in soft exosuits. In 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) 1798–1803 (IEEE, 2017).

  • 24.

    Wu, H., Liu, Q., Du, W., Li, C. & Shi, G. Transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl. Mater. Interf. 10, 3895–3901 (2018).

    CAS  Google Scholar 

  • 25.

    Park, J. J., Hyun, W. J., Mun, S. C., Park, Y. T. & Park, O. O. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interf. 7, 6317–6324 (2015).

    CAS  Google Scholar 

  • 26.

    Tolvanen, J., Hannu, J. & Jantunen, H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring. Sci. Rep. 8, 13241 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Tolley, M. T. et al. A resilient, untethered soft robot. Soft Robot. 1, 213–223 (2014).

    Google Scholar 

  • 28.

    Kim, K. K. et al. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Zhong, W. et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating Ag nanowires/polyolefin elastomer nanofibrous composite yarn. ACS Appl. Mater. Interf. 9, 42058–42066 (2017).

    CAS  Google Scholar 

  • 30.

    Atalay, A. et al. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking. Adv. Mater. Technol. 2, 1700136 (2017).

    Google Scholar 

  • 31.

    Lee, S. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 32.

    Song, K. et al. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 9, 8988 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Geng, W. et al. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 6, 36571 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Koiva, R., Riedenklau, E., Viegas, C. & Castellini, C. Shape conformable high spatial resolution tactile bracelet for detecting hand and wrist activity. In 2015 IEEE Int. Conf. on Rehabilitation Robotics (ICORR) Vol. 2015, 157–162 (IEEE, 2015).

  • 35.

    Stefanou, T., Chance, G., Assaf, T. & Dogramadzi, S. Tactile signatures and hand motion intent recognition for wearable assistive devices. Front. Robot. AI 6, 124 (2019).

    Google Scholar 

  • 36.

    Kim, S., Jeong, D., Oh, J., Park, W. & Bae, J. A novel all-in-one manufacturing process for a soft sensor system and its application to a soft sensing glove. IEEE Int. Conf. on Intelligent Robots and Systems 7004–7009 (2018).

  • 37.

    Wininger, M., Kim, N. H. & Craelius, W. Pressure signature of forearm as predictor of grip force. J. Rehab. Res. Dev. 45, 883–892 (2008).

    Google Scholar 

  • 38.

    Ravindra, V. & Castellini, C. A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front. Neurorobot. 8, 1–10 (2014).

    Google Scholar 

  • 39.

    Carpinella, I., Mazzoleni, P., Rabuffetti, M., Thorsen, R. & Ferrarin, M. Experimental protocol for the kinematic analysis of the hand: definition and repeatability. Gait Posture 23, 445–454 (2006).

    CAS  PubMed  Google Scholar 

  • 40.

    Wu, G. et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II: shoulder, elbow, wrist and hand. J. Biomech. 38, 981–992 (2005).

    CAS  PubMed  Google Scholar 

  • 41.

    Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    CAS  PubMed  Google Scholar 

  • 42.

    Chollet, F. Keras https://keras.io (2015).

  • 43.

    Li, X. et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2, 870 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Wu, J. M. et al. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 6, 4369–4374 (2012).

    CAS  PubMed  Google Scholar 

  • 45.

    Zhao, J. et al. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl. Phys. Lett. 101, 063112 (2012).

    ADS  Google Scholar 

  • 46.

    Yan, C. et al. Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater. 26, 2022–2027 (2014).

    CAS  PubMed  Google Scholar 

  • 47.

    Liu, Z. et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. Adv. Mater. 30, 1704229 (2018).

    Google Scholar 

  • 48.

    Yin, B. et al. Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame. ACS Appl. Mater. Interf. 9, 32054–32064 (2017).

    CAS  Google Scholar 

  • 49.

    Kim, K.-H., Jang, N.-S., Ha, S.-H., Cho, J. H. & Kim, J.-M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small 14, 1704232 (2018).

    Google Scholar 

  • 50.

    Wang, H. et al. Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv. Mater. 28, 4998–5007 (2016).

    CAS  PubMed  Google Scholar 

  • 51.

    Wei, Y., Chen, S., Yuan, X., Wang, P. & Liu, L. Multiscale wrinkled microstructures for piezoresistive fibers. Adv. Funct. Mater. 26, 5078–5085 (2016).

    CAS  Google Scholar 

  • 52.

    Wu, Y.-h. et al. Liquid metal fiber composed of a tubular channel as a high-performance strain sensor. J. Mater. Chem. C 5, 12483–12491 (2017).

    CAS  Google Scholar 

  • 53.

    Jhon, Y. I. et al. Tensile characterization of single-walled carbon nanotubes with helical structural defects. Sci. Rep. 6, 20324 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Shivashankar, H., Sangamesh, R. & Kulkarni, S. M. Processing and investigation of mechanical characteristics on the polydimethylsiloxane/carbon black composites. Mater. Res. Expr. 6, 105340 (2019).

    ADS  CAS  Google Scholar 

  • 55.

    Wang, S., Shan, Z. & Huang, H. The mechanical properties of nanowires. Adv. Sci. 4, 1600332 (2017).

    Google Scholar 

  • 56.

    Papageorgiou, D. G., Kinloch, I. A. & Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017).

    CAS  Google Scholar 

  • Leave a Reply

    Fill in your details below or click an icon to log in:

    WordPress.com Logo

    You are commenting using your WordPress.com account. Log Out /  Change )

    Google photo

    You are commenting using your Google account. Log Out /  Change )

    Twitter picture

    You are commenting using your Twitter account. Log Out /  Change )

    Facebook photo

    You are commenting using your Facebook account. Log Out /  Change )

    Connecting to %s

    Instant Loan

    All About Loans

    seo tool

    Boost the Website Ranking

    Gadget Deals

    latest gadgets in market


    Digital product online store

    Organic Gardening

    Tips of Growing organically

    AM Yoga Space

    All About Yoga Practice, Poses, and Benefits

    Top Acne Tips

    Acne Remedy Tips for at Home

    Inner Peace

    True wealth is the wealth of the soul


    You're always one decision away from a totally different life

    Girl Next Door

    A Digital Journal of all things Style, Fashion, Faith and Beauty

    Birdys Health Dose

    Health equals Wealth

    %d bloggers like this: