Slower decay of landfalling hurricanes in a warming world

  • 1.

    Ooyama, K. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 26, 3–40 (1969).

    ADS  Google Scholar 

  • 2.

    Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43, 585–605 (1986).

    ADS  Google Scholar 

  • 3.

    Emanuel, K. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 31, 75–104 (2003).

    ADS  CAS  Google Scholar 

  • 4.

    Kaplan, J. & DeMaria, M. A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteorol. Climatol. 34, 2499–2512 (1995).

    ADS  Google Scholar 

  • 5.

    Kaplan, J. & DeMaria, M. On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteorol. Climatol. 40, 280–286 (2001).

    ADS  Google Scholar 

  • 6.

    Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).

    ADS  Google Scholar 

  • 7.

    Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Knutson, T. et al. Tropical cyclones and climate change assessment: Part I. Detection and attribution. Bull. Am. Meteorol. Soc. 100, 1987–2007 (2019).

    ADS  Google Scholar 

  • 10.

    Bhatia, K. T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun. 10, 3942 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weath. Rev. 141, 3576–3592 (2013).

    ADS  Google Scholar 

  • 12.

    Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    ADS  Google Scholar 

  • 13.

    Eliassen, A. On the Ekman layer in a circular vortex. J. Meteorol. Soc. Jpn. 49A, 784–789 (1971).

    Google Scholar 

  • 14.

    Eliassen, A. & Lystad, M. The Ekman layer of a circular vortex—a numerical and theoretical study. Geophys. Norv. 31, 1–16 (1977).

    ADS  Google Scholar 

  • 15.

    Montgomery, M. T., Snell, H. D. & Yang, Z. Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci. 58, 421–435 (2001).

    ADS  Google Scholar 

  • 16.

    Murakami, H. & Wang, B. Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J. Clim. 23, 2699–2721 (2010).

    ADS  Google Scholar 

  • 17.

    Colbert, A. J., Soden, B. J., Vecchi, G. A. & Kirtman, B. P. The impact of anthropogenic climate change on North Atlantic tropical cyclone tracks. J. Clim. 26, 4088–4095 (2013).

    ADS  Google Scholar 

  • 18.

    Wallace, J. M. & Hobbs, P. V. Atmospheric Science: An Introductory Survey Vol. 92 (Elsevier, 2006).

  • 19.

    Tuleya, R. E. & Kurihara, Y. A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci. 35, 242–257 (1978).

    ADS  Google Scholar 

  • 20.

    Tuleya, R. E. Tropical storm development and decay: sensitivity to surface boundary conditions. Mon. Weath. Rev. 122, 291–304 (1994).

    ADS  Google Scholar 

  • 21.

    Simpson, R. H. & Riehl, H. The Hurricane And Its Impact (Louisiana State Univ. Press, 1981).

  • 22.

    Bloemer, M. S. Climatology and Analysis of the Decay of Tropical Cyclones Making Landfall in the US from the Atlantic Basin. Master’s thesis, Florida State Univ. (2009).

  • 23.

    Chen, J. & Chavas, D. R. The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci. 77, 2807–2834 (2020).

    ADS  Google Scholar 

  • 24.

    Smith, S. W. The Scientist And Engineer’s Guide To Digital Signal Processing Ch. 15 (California Technical Pub., 1997).

  • 25.

    Bryan, G. H. & Fritsch, J. M. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Weath. Rev. 130, 2917–2928 (2002).

    ADS  Google Scholar 

  • 26.

    Bryan, G. H. & Rotunno, R. The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Weath. Rev. 137, 1770–1789 (2009).

    ADS  Google Scholar 

  • 27.

    Bryan, G. H. Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Weath. Rev. 140, 1125–1143 (2012).

    ADS  Google Scholar 

  • 28.

    Emanuel, K. Assessing the present and future probability of hurricane Harvey’s rainfall. Proc. Natl Acad. Sci. USA 114, 12681–12684 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Keellings, D. & Hernández Ayala, J. J. Extreme rainfall associated with hurricane Maria over Puerto Rico and its connections to climate variability and change. Geophys. Res. Lett. 46, 2964–2973 (2019).

    ADS  Google Scholar 

  • 30.

    Kossin, J. P. A global slowdown of tropical-cyclone translation speed. Nature 558, 104–107 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R. & Yoshida, K. Tropical cyclone motion in a changing climate. Sci. Adv. 6, eaaz7610 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Elsner, J. B. Tracking hurricanes. Bull. Am. Meteorol. Soc. 84, 353–356 (2003).

    ADS  Google Scholar 

  • 33.

    Kossin, J. P., Camargo, S. J. & Sitkowski, M. Climate modulation of North Atlantic hurricane tracks. J. Clim. 23, 3057–3076 (2010).

    ADS  Google Scholar 

  • 34.

    Rogers, R. E. & Davis, R. E. The effect of coastline curvature on the weakening of Atlantic tropical cyclones. Int. J. Climatol. 13, 287–299 (1993).

    Google Scholar 

  • 35.

    Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Ho, F. P., Su, J. C., Hanevich, K. L., Smith, R. J. & Richards, F. P. Hurricane climatology for the Atlantic and Gulf coasts of the United States. NOAA Technical Report NWS 38, https://coast.noaa.gov/data/hes/images/pdf/ATL_GULF_HURR_CLIMATOLOGY.pdf (1987).

  • 37.

    Weinkle, J., Maue, R. & Pielke, R., Jr. Historical global tropical cyclone landfalls. J. Clim. 25, 4729–4735 (2012).

    ADS  Google Scholar 

  • 38.

    Klotzbach, P. J., Bowen, S. G., Pielke, R., Jr & Bell, M. Continental US hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorol. Soc. 99, 1359–1376 (2018).

    ADS  Google Scholar 

  • 39.

    Neumann, C. An update to the National Hurricane Center “Track Book”. In Minutes of the 48th Interdepartmental Conference A-47–A-53 (Office of Fed. Coord. for Meteor. Services and Supporting Research, NOAA, 1994).

  • 40.

    Chavas, D. land_or_ocean.m. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/45268-land_or_ocean-m (2020).

  • 41.

    Schreck, C. J. III, Knapp, K. R. & Kossin, J. P. The impact of best track discrepancies on global tropical cyclone climatologies using IBTrACS. Mon. Weath. Rev. 142, 3881–3899 (2014).

    ADS  Google Scholar 

  • 42.

    Nolan, D. S., Zhang, J. A. & Uhlhorn, E. W. On the limits of estimating the maximum wind speeds in hurricanes. Mon. Weath. Rev. 142, 2814–2837 (2014).

    ADS  Google Scholar 

  • 43.

    Jin, F.-F., Boucharel, J. & Lin, I.-I. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature 516, 82–85 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Dunion, J. P. Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Clim. 24, 893–908 (2011).

    ADS  Google Scholar 

  • 45.

    Miyamoto, Y. & Takemi, T. An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett. 11, 278–282 (2010).

    ADS  Google Scholar 

  • 46.

    Yuan, S., Zhong, Z., Yao, H., Yuan, W. & Xiaodan, W. The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. J. Meteor. Res. 27, 40–49 (2013).

    Google Scholar 

  • 47.

    Riehl, H. Tropical Meteorology (McGraw-Hill, 1954).

  • 48.

    Holland, G. J., Belanger, J. I. & Fritz, A. A revised model for radial profiles of hurricane winds. Mon. Weath. Rev. 138, 4393–4401 (2010).

    ADS  Google Scholar 

  • 49.

    Khairoutdinov, M. & Emanuel, K. Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst. 5, 816–825 (2013).

    ADS  Google Scholar 

  • 50.

    Chavas, D. R. & Emanuel, K. Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci. 71, 1663–1680 (2014).

    ADS  Google Scholar 

  • 51.

    Chavas, D. R., Lin, N., Dong, W. & Lin, Y. Observed tropical cyclone size revisited. J. Clim. 29, 2923–2939 (2016).

    ADS  Google Scholar 

  • 52.

    Lanzante, J. R. Uncertainties in tropical-cyclone translation speed. Nature 570, E6–E15 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Yule, U. & Kendall, M. An Introduction To The Theory Of Statistics Ch. 12 (Griffin and Company, 1950).

  • 54.

    Evans, C. et al. The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Weath. Rev. 145, 4317–4344 (2017).

    ADS  Google Scholar 

  • 55.

    Lee, S. H., Williams, P. D. & Frame, T. H. Increased shear in the North Atlantic upper-level jet stream over the past four decades. Nature 572, 639–642 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Fairall, C., Bradley, E. F., Hare, J., Grachev, A. & Edson, J. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591 (2003).

    ADS  Google Scholar 

  • 57.

    Donelan, M. et al. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306 (2004).

    ADS  Google Scholar 

  • 58.

    Drennan, W. M., Zhang, J. A., French, J. R., McCormick, C. & Black, P. G. Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci. 64, 1103–1115 (2007).

    ADS  Google Scholar 

  • 59.

    Rotunno, R. & Emanuel, K. A. An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci. 44, 542–561 (1987).

    ADS  Google Scholar 

  • 60.

    Goldenberg, S. B. & Shapiro, L. J. Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Clim. 9, 1169–1187 (1996).

    ADS  Google Scholar 

  • Leave a Reply

    Fill in your details below or click an icon to log in:

    WordPress.com Logo

    You are commenting using your WordPress.com account. Log Out /  Change )

    Google photo

    You are commenting using your Google account. Log Out /  Change )

    Twitter picture

    You are commenting using your Twitter account. Log Out /  Change )

    Facebook photo

    You are commenting using your Facebook account. Log Out /  Change )

    Connecting to %s

    Instant Loan

    All About Loans

    seo tool

    Boost the Website Ranking

    Gadget Deals

    latest gadgets in market

    DIGITAL STORE

    Digital product online store

    Organic Gardening

    Tips of Growing organically

    AM Yoga Space

    All About Yoga Practice, Poses, and Benefits

    Top Acne Tips

    Acne Remedy Tips for at Home

    Inner Peace

    True wealth is the wealth of the soul

    Transformelle

    You're always one decision away from a totally different life

    Girl Next Door

    A Digital Journal of all things Style, Fashion, Faith and Beauty

    Birdys Health Dose

    Health equals Wealth

    %d bloggers like this: